DERIVATIZATION OF STEROIDS FOR OBTAINING CONJUGATES: USE AS VECTORS FOR DRUG DELIVERY

Abdul Faruk and Mohan Paul Singh Ishar
Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar-143005, Punjab, India.
Tel. +91-183-2258802-08 Extn. 3457; Fax. +91-183-2258819-20

Keywords: steroids, conjugates; vectors; microwave; carboxyalkylaminosteroid

INTRODUCTION
Derivatization of steroids has been carried out for desired pharmacological applications. This includes preparation of more potent molecules,1-3 antihormones,4-6 steroids such as anticancer,7-9 anti-inflammatory,10 immunosuppressant,11 antiobesity,12 antidiabetic,13 enzyme inhibitors,14-16 muscle relaxant17 and steroidal antibodies18 etc. Transformations of steroids have also been carried out for mapping the distribution of steroid receptors19 and their labeling for antibody production,20 and recently for use as vectors for anticancer moieties/molecules.

The use of steroids for treatment of certain types of tumors is well known and in the past few decades lot of effort has been devoted to utilize steroids for targeting anticancer moieties/ molecules. This approach is getting more importance due to the discovery of steroidal receptors in cancers of different organs e.g., Lung cancer,21 meningiomas,22 in addition to brain, kidney, and prostate cancers where the expression of receptor gene is well documented.23 Some of the potential anticancer steroids and steroidal conjugates introduced in the recent past include estradiol and cholesterol derivatives (1-11). Among these, the compound (7) is a nitrogen mustard conjugate of a bile acid, whereas (6), an antiestrogenic aromatase inhibitor is used to treat hormone dependent tumors.24 Similarly, RU 484 (8) is an anti-progestogen, which is used in the therapy of prostate cancer.25 Useful anticancer properties are also displayed by androstane derivatives such as 10 and 11.26-28

Recently, some amino substituted steroids such as (12a,b) have also been involved in glycolipids designed for targeting lipoproteins to hepatic asialoglycoprotein receptors as a part of antithrombotic therapy.29

Steroids biotinylated through aminoaalkyl tethers (13, 14) have been developed as chemical inducers of protein dimerization that efficiently dimerizes estrogen receptors and streptavidin proteins.30

Amino substituted steroids have also been exploited as polyfunctionalized well defined scaffolds with potential medicinal, supramolecular and combinatorial applications.31

Though, a variety of strategies have been exploited for functionalization of steroidal nucleus,32-34 recently Ishar et al., with the objective of developing substituted steroids as vector for conjugation with anticancer moieties, have investigated photochemical irradiation of unsaturated steroidal ketones (15) in aqueous organic solvent, in the presence of amino acids for one step addition of amino acid residues to steroidal nucleus;35 a variety of solvent and aminoacid addition products have been isolated (16-19, Scheme I).36

Consequently, development of efficient routes to suitably functionalized steroids and preparation of their conjugates with biologically active molecules is of considerable interest. In recent times another non-conventional method, which has shown tremendous potential in organic synthetic methodology is the microwave irradiation.37 It was decided to carry out microwave assisted addition of aminoacid to steroid epoxide and unsaturated steroids to obtain valuable aminoacid substituted steroids. Thus, under present investigation following reactions were carried out:

- Microwave assisted reaction of 16, 17-epoxy-3-hydroxypregnenolone (20) with aminoacids
- Microwave assisted reaction of 16-dehydropregnenolone-3-acetate (15) with aminoacids

*Correspondence: abdul_faruk@yahoo.com
DERIVATIZATION OF STEROIDS

RESULTS AND DISCUSSION

Epoxide (20) was reacted with aminoacids under microwave irradiation conditions. It (20) was dissolved in tetrahydrofuran and mixed with aqueous solution of aminoacid (glycine/valine/phenylalanine) followed by the addition of K$_2$CO$_3$ (200 mg) to the solution. The resulting mixture was subjected to vacuum and warming till a dry solid mass was obtained. This solid mass was suspended in acetonitrile in a reaction vessel, and subjected to microwave irradiation in a mono-mode microwave reactor (CEM-Discover) for 15 minutes. Solvent was again evaporated and the residue stirred with chloroform. The chloroform extract was concentrated to a solid, which was resolved column chromatographically over silica gel to obtain unreacted (20) along with other components characterized spectroscopically (IR, 1H NMR, 13C NMR and mass) as 21a-c (Scheme III).

The assigned structures are based on detailed spectroscopic analysis. The incorporation of aminoacid residue was established by mass spectra (ESI). The IR spectrum of 21b revealed besides, broad bands due to NH/OH moieties, a band at 1755 cm$^{-1}$ (-COOH) and another carbonyl band at 1718 cm$^{-1}$. The incorporation of valine in 21b was established by deuteration exchangeable resonances at δ 10.51 and δ 4.35. The α-proton of aminoacid residue appeared at δ 3.96, the characteristic steroidal proton multiplets in the upfield part of the 1H NMR spectrum revealed a doublet due to methylys of the valine moiety at δ 0.98, besides singlets due to steroidal methyls. The 13C NMR spectrum provided most conclusive evidence about the assigned structures. The IR spectrum of aminoacid–steroid addition product was established by spectroscopic analysis. The formation of 1:1 aminoacid–steroid addition product was established by mass spectra (ESI). The IR spectrum of 22a revealed carbonyl bands at 1758 (-COOH), 1732 (CH$_3$COO) and 1716 cm$^{-1}$ (CH$_2$COO). Its proton NMR showed the absence of erstwhile C$_{17}$-H olefinic resonance, which appears in the 1H NMR spectra of 16-DPA (27) at δ7.65. This together with the IR absorption band of C$_{16}$-carbonyl (1716 cm$^{-1}$) and the absence of earstwhile C$_{17}$- olefinic-C resonances in the 13C NMR spectrum of 22a, and 13C NMR chemical shift of C$_{15}$, indicated the absence of C$_{17}$C$_{15}$ double bond in 22a. Other 1H NMR and 13C NMR assignments (vide-experimental) are in consonance with the assigned structure. Resonances of C$_{15}$ and C$_{16}$ in case of 22a appeared at δ33.7 and δ56.9, indicating the linking of C$_{16}$ with amino function of aminoacids. Structures of 22b and 22c have also been similarly assigned. The stereochemical disposition of C$_{16}$ is not clear whereas stereochemical assignment at C$_{17}$ is based on the chemical shift of C$_{17}$. The reaction can be described as Michael addition of aminoacid to double bond and stereolysis.

CONCLUSIONS

Microwave irradiation of 16α,17α-epoxy-3α-hydroxyprog-5-ene-20-one (20) and 16-dehydropregnenolone-3β-acetate (15) in the presence of K$_2$CO$_3$ and aminoacid has furnished the valuable aminoacid addition products in moderate yields and within a very short reaction times. Possibly, their yield can be further improved by carrying out reactions under mild Lewis acid catalyzed conditions. The obtained molecule can be conjugated with biologicaly active moieties through carboxylic function. The steroid moiety can also be converted to α-unsaturated ketone is system by oxidation. The resulting steroidal conjugates shall be valuable vectors for drug targeting.
DERIVATIZATION OF STEROIDS

EXPERIMENTAL

General: Starting materials and reagents were purchased from commercial suppliers and used after further purification (crystallization/ distillation). Brucker AC-200 FT (200 MHz) and JEOL AL-300FT (300 MHz) spectrometers were used to record 1H NMR and 13C NMR (50 and 75 MHz) spectra. Chemical shifts (J) are reported as down field displacements from TMS used as internal standards and coupling constant (J) are reported in Hz. IR spectra were recorded with Shimadzu FT-IR spectrophotometer on KBr pellets or reported in Hz. IR spectra were recorded with Shimadzu spectrometers. Chemical shifts ($‘$) are kindly provided by Mehra Pharmaceuticals, Amritsar, India and 16$, 17$-epoxy-3β-hydroxypregnenolone (20) was prepared by literature method.31

General procedure for reaction of 16α, 17α-epoxy-3β-hydroxypregnenolone (20) with amino acids under microwave irradiation

Epoxy-steroid (20, 100 mg) was solubilized in 20 ml of tetrahydrofuran (THF), and excess of amino acid (valine/glycine/phenylalanine, ~ 10 equivalents) was dissolved in water (5 ml) in another conical flask. These two parts were then mixed in the presence of K$_2$CO$_3$ (200 mg) and heated so that both amino acid and steroid are solubilized. This mixture was then dried under reduced pressure to obtain a solid mass. The obtained solid mass was again resuspended in acetonitrile in a 150 ml round bottom flask. It was fitted with a condenser with the lid and the contents were subjected to microwave irradiation in a CEM- Discover Focused Monomode Microwave apparatus (2450 MHz, 300 W) at 20 power level for 15 minutes (1 min hold time and 14 minute running time). The reaction vessels were taken out and acetonitrile was evaporated under reduced pressure to recover solid. Water (~100 ml) was added and the contents were extracted with chloroform (150 ml, twice); the residue obtained on evaporation of aqueous layer contained only amino acid. The chloroform extract was dried over anhydrous Na$_2$SO$_4$, filtered and solvent was again removed under reduced pressure. The residue obtained was subjected to column chromatography over silica gel (60-120 mesh, column packed in Hexane and eluted with Hexane-EtOAc gradient and EtOAc, EtOAc-MeOH gradient) to obtain various components, some of which were further purified by preparative TLC (2 mm thick plates, developed with 0.5% MeOH in CHCl$_3$ and components extracted with methanol) and their spectroscopic data was recorded.

Microwave assisted reaction of 16α, 17α-epoxy-3β-hydroxypregnenolone (20) in the presence of glycine

Microwave assisted reaction of 16α, 17α-epoxy-3β-hydroxypregnenolone (20, 100 mg) in the presence of glycine (200 mg) under conditions described above, for 15 min and chromatographic resolution of the microlysate afforded N-(3α-16α-dihydroxypregn-16α-yl)glycine (21a), a light brown gummy material (63.0, mg); mp 3320 (br, NH /OH), 3100 (br, NH /OH), 2970, 2965, 2945, 2925, 2900, 2840, 1750, 1716, 1651, 1563, 1484, 1462, 1422, 1390, 1264 and 1284 cm$^{-1}$; 1H NMR (CDCl$_3$, 200 MH$_z$): 5O.7 (br, 1H), 6.25 (br d, NH), 5.34 (d, 1H, J 4.30 Hz, C$_3$-H), 3.58-3.50 (m, 1H, C$_5$-H), 3.34 (br d, 2H), 2.90 (dd, 1H, J 3.6, 6.2 Hz), 2.78-0.70 (overlapping multiplets, 31 H, with singlets at ~ 2.16, 1.10, 0.70, methyls); 13C NMR (CDCl$_3$): 210.7 (C$_5$), 172.6 (COOH), 139.8 (C$_7$), 121.6 (C$_6$), 107.4 (C$_{10}$), 70.9 (C$_9$), 57.4, 53.9, 52.4 50.6, 49.2, 44.1, 38.8, 38.8, 37.9, 36.8, 31.0, 31.2, 27.7, 21.3, 20.6, 17.4, 14.7, Mass (ESI): m/z 429.2, (M + Na$^+$), 428.2 (M + Na$^+$).

Microwave assisted reaction of 16α, 17α-epoxy-3β-hydroxypregnenolone (20) in the presence of valine

Microwave assisted irradiation of 16α, 17α-epoxy-3β-hydroxypregnenolone (20, 100 mg) in the presence of valine (200 mg) under conditions described above, for 15 min and chromatographic resolution of the microlysate afforded N-(3α-16α-dihydroxy-3β-epoxy-3β-hydroxypregnenolone-16α-yl)valine (21b), a yellow solid material (65.0, mg); mp 157-159 C$^\circ$; max$_{\text{KBr}}$: 3320 (br, NH /OH), 3160 (br, NH, extends up to 3000 cm$^{-1}$), 3100 (br, NH, extends up to 3000 cm$^{-1}$), 2972, 2963 2945, 2927, 2905, 2845, 1755, 1716, 1651, 1563, 1484, 1465, 1425, 1390, 1260 and 1280 cm$^{-1}$; 1H NMR (CDCl$_3$, 300 MH$_z$): 5.05 (br, 1H, 5.33 (d, 1H, J 4.30 Hz, C$_3$-H), 4.35 (br d, NH), 3.96 (m, 1H), 3.58-3.50 (m, 1H, C$_5$-H), 2.92-2H, 1H, J 4.2x 5.8 Hz), 2.78-0.70 (overlapping multiplets, 37 H, with singlets at ~ 2.15, 1.15, 0.72 (methyls) and doublet at ~ 0.98 (methyls); 13C NMR (CDCl$_3$): 208.7 (C$_{30}$), 175.4 (COOH), 140.1 (C$_{13}$), 121.8 (C$_6$), 106.8 (C$_{10}$), 71.1 (C$_9$), 67.5, 57.2, 54.1, 50.8, 49.1, 45.7, 43.9, 38.7, 37.7, 36.8, 31.9, 31.4, 30.1, 27.7, 21.3, 20.6, 19.3, 17.4, 14.7, Mass (ESI): m/z 471.2, (M + Na$^+$), 470.2 (M + Na$^+$).

Microwave assisted reaction of 16α, 17α-epoxy-3β-hydroxypregnenolone (20) in the presence of phenylalanine

Microwave assisted irradiation of 16α, 17α-epoxy-3β-hydroxypregnenolone (20, 100 mg) in the presence of glycine (200 mg) under conditions described above, for 15 min and chromatographic resolution of the microlysate afforded N-(3α-16α-dihydroxypregn-16α-yl)phenylalanine (21c) a white solid material (85.0, mg); mp 169-171 C$^\circ$; max$_{\text{KBr}}$: 3320 (br, NH /OH), 3160 (br, NH, extends up to 3000 cm$^{-1}$, aromatic C-H, OH), 2972, 2963 2945, 2927, 2905.

Journal of Pharmaceutical Research Vol. 9, No. 1, January 2010 : 08

Abdul Faruk and Mohan Paul Singh Ishar
DERIVATIZATION OF STEROIDS

2844, 1752, 1717, 1645, 1605, 1563, 1520, 1500, 1484, 1462, 1422, 1390, 1264 and 1284 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 10.5 (br, 1H), 7.25 (m, 2H), 7.16 (d, 2H, J 6.8 Hz), 7.10 (t, 1H, J 7.2 Hz), 5.85 (br d, NH), 5.34 (d, 1H, J 4.30 Hz, C₆H), 5.30 (d, 1H, J 4.30 Hz), 5.20 (dd 1H, J 3.65, 6.24 Hz), 2.78-0.70 (overlapping multiplets, 32 H, with singlets at δ 2.14, 1.05, 0.72, methyls); ¹³C NMR (CDCl₃): δ 209.4 (C₂O), 174.2 (COOH), 148.2, 140.1 (C₁), 132.2, 130.7, 129.3, 120.4 (C₁), 106.2 (C₁), 71.2 (C₆H), 65.2, 56.1, 52.6, 51.4, 49.1, 48.2, 43.4, 37.5, 37.8, 36.6, 35.4, 32.9, 30.1, 26.1, 20.9, 19.8, 16.1, 13.8; Mass (ESI): m/z 519.6 (M + Na⁺); 518.6 (M + Na⁺).

General procedure for reaction of 16-dehydropregnenolone-3-β-acetate (15) with aminoacids under microwave irradiation

Steroid (15, 100 mg) was solubilized in 20 ml of tetrahydrofuran (THF) and excess of aminoacid (valine / glycine / phenylalanine, ~ 10 equivalents) was dissolved in water (5 ml) in another conical flask. The two solutions were then mixed in the presence of K₂CO₃ (200 mg) and heated so that both aminoacid and steroid are solubilized. This mixture was then dried under reduced pressure to form the solid mass. This solid mass was again resuspended in acetonitrile and subjected to microwave irradiation (CEM-Discover Focused Monomode Microwave apparatus, 2450 MHz, 300 W) at 20 power level for 15 minutes. After the completion of reaction, contents were taken out and acetonitrile was evaporated under reduced pressure and a solid mass separated out. Water (~100 ml) was added and the contents were extracted with chloroform (150 ml, twice); the residue obtained on evaporation of aqueous layer contained only amino acid. The chloroform extract was dried over anhydrous MgSO₄, filtered and solvent was again removed under reduced pressure. The residue obtained was column chromatograph on silica gel (60-120 mesh, column packed in hexane and eluted with Hexane-EtOAc gradient, EtOAc, EtOAc-MeOH gradient) to obtain various components, some of which were further purified by preparative TLC (as discussed earlier) and their spectroscopic data was collected.

Microwave assisted reaction of 16-dehydropregnenolone-3-β-acetate (15) in the presence of valine

Microwave assisted irradiation of 16-dehydropregnenolone-3-β-acetate (15, 100 mg) in the presence of valine (200 mg) under conditions described above, for 15 min and chromatographic resolution of the microlysate afforded overlapping multiplets, 31 H, with singlets at δ 2.18, 1.12, 0.69, methyls); ¹³C NMR (CDCl₃): δ 211.7 (C₂O), 178.1 (COOH), 172.3 (CH₂COO-), 138.7 (C₁), 122.3 (C₁), 57.1 (C₁), 56.2, 53.1, 50.7, 48.5, 43.8, 37.4, 37.0, 36.8, 35.5, 31.2, 30.4, 26.2, 21.2, 16.1, 15.4; Mass (ESI): m/z 454.2 (M + Na +1)⁺.

Microwave assisted reaction of 16-dehydropregnenolone-3-β-acetate (15) in the presence of glycine

Microwave assisted irradiation of 16-dehydropregnenolone-3-β-acetate (15, 100 mg) in the presence of glycine (200 mg) under conditions described above, for 15 min and chromatographic resolution of the microlysate afforded N-(3-hydroxypregnenolone-16-yl)glycine (22a), a dark brown gummy material (58.0, mg): mp 162-164 (overlapping multiplets, 31 H, with singlets at δ 2.18, 1.12, 0.69, methyls); ¹³C NMR (CDCl₃): δ 211.7 (C₂O), 178.1 (COOH), 172.3 (CH₂COO-), 138.7 (C₁), 122.3 (C₁), 57.1 (C₁), 56.2, 53.1, 50.7, 48.5, 43.8, 37.4, 37.0, 36.8, 35.5, 31.2, 30.4, 26.2, 21.2, 16.1, 15.4; Mass (ESI): m/z 454.2 (M + Na +1)⁺.

Microwave assisted reaction of 16-dehydropregnenolone-3-β-acetate (15) in the presence of phenylalanine

Microwave assisted irradiation of 16-dehydropregnenolone-3-β-acetate (27, 100 mg) in the presence of phenylalanine (200 mg) under conditions described above, for 15 min and chromatographic resolution of the microlysate afforded N-(3-hydroxypregnenolone-16-yl)phenylalanine (22c), a white solid material (58.0, mg); mp 162-164 °C; δ max (KBr): 3320 (br, NH, OH), 3160 (br, NH, extends up to 3000 cm⁻¹, aromatic C-H, OH), 2972, 2963 2945, 2927, 2905, 2844, 1752, 1717, 1645, 1605, 1563, 1520, 1500, 1484, 1462, 1422, 1390, 1264 and 1284 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz): δ 10.5 (br, 1H), 7.25 (m, 2H), 7.16 (d, 4H, J 6.8 Hz, 7.10 (t, 1H, J 7.2 Hz) 5.85 (br d, NH), 5.34 (d, 1H, J 4.30 Hz, C₆H), 5.30 (d, 1H, J 4.30 Hz, C₆H), 3.90 (br d, 1H, J 4.30 Hz, C₆H), 2.80-0.69 (overlapping multiplets, 40 H, with singlets at δ 2.35, 2.16, 1.05, 0.68 (methyls) and doublet at δ 0.92 (methyl)); ¹³C NMR (CDCl₃): δ 210.1 (C₁), 177.2 (COOH), 170.2 (CH₂COO-), 142.7 (C₂), 122.2 (C₂), 74.1 (C₁), 66.1, 63.7, 56.9, 51.9, 50.2, 49.9, 44.6, 42.8, 37.4, 37.1, 35.9, 32.9, 30.3, 29.6, 26.3, 20.4, 20.0, 19.8, 19.4, 16.7, 15.3; Mass (ESI): m/z 496.6 (M + Na⁺).

Microwave assisted reaction of 16-dehydropregnenolone-3-β-acetate (15) in the presence of phenylalanine

Abdul Faruk and Mohan Paul Singh Ishar
ACKNOWLEDGEMENT
Permission to use microwave reactor (CEM-Discover) at Institute of Himalayan Bioresource Technology (IHBT), Palampur, India is gratefully acknowledged.

REFERENCES

Abdul Faruk and Mohan Paul Singh Ishar