Two spectrophotometric methods have been developed for the simultaneous estimation of Enalapril Maleate (Ena) and Losartan Potassium (Los) in combined tablet dosage forms. The first method involves determination using the absorbance correction method, the sampling wavelengths selected are, 222 nm and 250 nm over the concentration ranges of 2-32 mcg/mL and 1-60 mcg/mL for Ena and Los respectively. The second method is the second order derivative method, the sampling wavelength selected for estimation of Ena and Los are 219.5 nm and 264 nm which show linearity in the concentration ranges of 2-32 mcg/mL and 1-60 mcg/mL respectively. The results of the analysis were validated statistically and recovery studies were carried out as per ICH guidelines. Also the developed methods were successfully employed for dissolution studies in tablet dosage form.

Keywords: Enalapril; Losartan; Absorbance correction method; Second order derivative method; dissolution studies.

EXPERIMENTAL

Preparation of standard stock solution

Standard stock solutions (100µg/mL) of Ena and Los were prepared by dissolving separately 10 mg of drug each in distilled water.

Preparation of sample stock solutions

Twenty tablets were weighed and crushed to a fine powder. An accurately weighed powder sample equivalent to 10 mg of Losartan was transferred to a 100ml volumetric flask and dissolved in 50 ml of distilled water. After the immediate dissolution, the volume was made up to the mark with same solvent. The solution was sonicated for about 5 mins and was then filtered through Whatmann filter paper No.41. The solution was suitably diluted with distilled water to obtain sample solutions containing Ena and Los in the concentrations ratio of 5:25 mcg/mL respectively.

Method A: Absorption correction method

Standard solutions (10 µg/mL) of Ena and Los were scanned in spectrum mode of the instrument from 400 to 200 nm. The overlain spectrum of the two drugs (Fig. 1) indicated that both the drugs exhibited strong absorbance at about 222 nm. However Los exhibited strong absorbance at 250 nm, at which Ena showed zero absorbance. Hence 250 nm was selected for the determination of Los without interference of Ena. The linearity range for Ena is 2-32 µg/mL at 222 nm with a co-efficient of correlation of 0.998. Los exhibits linearity

Correspondence: dypharmachem@yahoo.co.in
over a concentration range of 1-60 µg/mL both at 222 nm and 250 nm. The co-efficient of correlation for Los were found to be 0.9998 and 0.9990 at 222 nm and 250 nm respectively.

Absorances of both the drugs recorded were found to be practically additive at 222 nm. An accurate estimation of Ena at 222 nm has been achieved after correction for absorption of Los. The molar absorptivity values for each drug at selected wavelengths were calculated. Since Ena does not absorb at 250 nm, the concentration of Los at 250 nm is given by the formula

\[
A_{\text{Los250}} = \text{Los250} \times b \times C_{\text{Los}} \\
C_{\text{Los}} = \frac{A_{\text{Los250}}}{b \times (1.436 \times 10^4)} \quad \text{........................ (1)}
\]

The absorbance of Los at 222 nm was calculated as,

\[
A_{\text{Los222}} = \text{Los222} \times b \times C_{\text{Los}} \\
A_{\text{Los222}} = (3.0834 \times 10^4) \times 1 \times C_{\text{Los}} \quad \text{........................ (2)}
\]

The corrected absorbance of Ena at 222 nm was found to be –

Corrected absorbance of Ena at 222 nm = \(A_{222} - A_{\text{Los222}}\) \quad \text{........................ (3)}

The corrected absorbance of Ena was then substituted in the formula given below to determine the concentration of Ena.

\[
A_{\text{Ena222}} = (2.804 \times 10^3) \times 1 \times C_{\text{Ena}} \quad \text{........................ (4)}
\]

Where, \(A_{\text{Los250}}\) and \(A_{\text{Los222}}\) – Absorbanes of Los at 250 and 222 nm respectively,

\(C_{\text{Los250}}\) and \(C_{\text{Los222}}\) – Concentrations of Los at 250 and 222 nm respectively,

\(A_{\text{Los250}}\) and \(A_{\text{Los222}}\) – Absorbanes of standard mixture at 250 and 222 nm respectively.

\(A_{\text{Ena}}\) – Absorbanec of Ena at 222 nm,

\(C_{\text{Ena}}\) – Concentration of Ena at 222 nm.

Estimation from marketed preparation

Suitable dilutions of tablet sample solution were scanned in the range of 400–200 nm and their absorbances were recorded at selected wavelengths. The concentrations of each drug in sample solutions were calculated using equations 1–4. The results of the analysis and statistical validation data of the tablet formulation are given in Table 1.

TABLE 1. Statistical validation data of tablet formulation

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount present (µg)</th>
<th>Method</th>
<th>% Amount found</th>
<th>Relative standard deviation</th>
<th>Standard deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ena</td>
<td>50</td>
<td>A</td>
<td>50.95</td>
<td>0.44</td>
<td>0.444</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>B</td>
<td>39.06</td>
<td>1.15</td>
<td>1.156</td>
</tr>
<tr>
<td>Los</td>
<td>100</td>
<td>A</td>
<td>98.95</td>
<td>0.62</td>
<td>0.623</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>B</td>
<td>96.37</td>
<td>0.97</td>
<td>0.974</td>
</tr>
</tbody>
</table>

* Denotes average of six estimations

Tablet Formulation: ENVAS – RB 25, manufactured by Cadila Pharma

Method B - Second order derivative method

The standard stock solutions were prepared as discussed in Method A. suitable dilution of both drug solutions (10 µg/mL of Los and 10 µg/mL of Ena) were scanned between 400 to 200 nm using the spectrum mode of the instrument. The absorption spectras thus obtained were derivatised from first to fourth order. The second order derivative spectras were selected for the analysis of both the drugs. From the overlay derivative spectras obtained, the wavelengths were selected in a manner such that at the zero crossing wavelength of one drug, the other should show substantial absorbance. The second order overlain spectras of both drugs (Fig.2) reveals that Ena and Los show zero crossing points at 214 and 254 nm, respectively. Mixed standards of Ena and Los were prepared and their absorbances were measured at the

![Fig. 1: Overlain spectra of ena and los in absorbance correction method](image)

![Fig. 2: Overlain spectra of Ena and Los in first order derivative method](image)
Dissolution Studies

The release kinetics of Enalapril Maleate and Losartan Potassium from tablet dosage forms were studied by performing dissolution studies. Dissolution tests were performed using USP type II dissolution test apparatus and 900 mL of distilled water as the dissolution medium set at 37 ± 0.5°C at 100 rpm. 10 mL of sample solutions were withdrawn at intervals of 5 min for 60 min, each time replacing the withdrawn volume with fresh 10 mL distilled water (sink condition) maintained at the same temperature (37 ± 0.5°C). The withdrawn samples were filtered through Whatmann filter paper No.41. and suitably diluted to obtain solutions within the Beer’s concentration range for both drugs. The resulting solutions were then analyzed by both absorbance correction method and second order derivative method. By applying both methods for the dissolution studies, % cumulative drug release was calculated for Ena and Los. The dissolution study was carried out in triplicate. The graph of dissolution time Vs % cumulative drug release was plotted, which are shown in Figs. 3 and 4.

Results

The optical characteristics and regression values of the calibration curves for the developed methods are presented in Table 2. The mean % content of Ena and Los by both methods was 100.10% and 100.03% respectively. Also the mean % recoveries of Ena and Los by both methods were 100.23% and 99.79% respectively. The results of the tablet analysis, its statistical validation data and recovery studies by both the methods are given in Table 1.

Table 2: Optical characteristics and validation data of enalapril maleate and losartan potassium

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Enalapril Maleate</th>
<th>Losartan Potassium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>350 nm 300 nm</td>
<td>350 nm 300 nm</td>
</tr>
<tr>
<td>Purity*</td>
<td>0.9996 0.9974</td>
<td>0.9995 0.9997</td>
</tr>
<tr>
<td>LOD (µg/mL)</td>
<td>0.0219 0.0890</td>
<td>0.020 0.0194</td>
</tr>
<tr>
<td>LOQ (µg/mL)</td>
<td>0.1105 0.3905</td>
<td>0.050 0.0350</td>
</tr>
<tr>
<td>Regression coefficient</td>
<td>0.9995 0.9995</td>
<td>0.9995 0.9995</td>
</tr>
</tbody>
</table>

* Denotes average of six estimations

Where, Method-A – Absorbance correction method
Method-B – Second order derivative method

Estimation from marketed preparation

The tablet sample solution was scanned in the spectrum mode in range of 400 – 200nm. The absorbances of the sample solutions were recorded at 214 nm and 254 nm in the second order derivative mode. By using the standard calibration curves, the unknown concentration of the drugs in sample solutions were obtained. The analysis procedure was repeated six times with the same batch of tablets. The results of the tablet analysis and its statistical validation data are given in Table 1.

Dissolution studies

The release kinetics of Enalapril Maleate and Losartan Potassium from tablet dosage forms were studied by performing dissolution studies. Dissolution tests were performed using USP type II dissolution test apparatus and 900 mL of distilled water as the dissolution medium set at 37 ± 0.5°C at 100 rpm. 10 mL of sample solutions were withdrawn at intervals of 5 min for 60 min, each time replacing the withdrawn volume with fresh 10 mL distilled water (sink condition) maintained at the same temperature (37 ± 0.5°C). The withdrawn samples were filtered through Whatmann filter paper No.41. and suitably diluted to obtain solutions within the Beer’s concentration range for both drugs. The resulting solutions were then analyzed by both absorbance correction method and second order derivative method. By applying both methods for the dissolution studies, % cumulative drug release was calculated for Ena and Los. The dissolution study was carried out in triplicate. The graph of dissolution time Vs % cumulative drug release was plotted, which are shown in Figs. 3 and 4.

Table 3: Statistical validation of recovery studies

<table>
<thead>
<tr>
<th>Level of recovery</th>
<th>Method</th>
<th>% Recovery</th>
<th>t-value</th>
<th>F-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>100.10</td>
<td>0.9996</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.03</td>
<td>0.9995</td>
<td>0.325</td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>100.40</td>
<td>0.9996</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.40</td>
<td>0.9996</td>
<td>0.325</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>100.57</td>
<td>0.9996</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100.57</td>
<td>0.9996</td>
<td>0.325</td>
</tr>
</tbody>
</table>

* Denotes average of three estimations at each level of recovery.
CONCLUSIONS

Enalapril Maleate and Losartan Potassium are available in combined tablet dosage form for the treatment of Hypertension. No single UV spectrophotometric method has been reported for the estimation of the two drugs in combination. Here two simple UV spectrophotometric methods (Absorbance correction method and Second order derivative method) were developed for their simultaneous estimations. The standard deviation, RSD and standard error calculated for both the methods are low, indicating high degree of precision of the methods. The RSD is also less than 2% as required by ICH guidelines. The % recovery was between 98-102% indicating high degree of accuracy of the proposed methods. The results of the t test and F test also indicated that there is no significant difference between the two methods for the analysis of Enalapril Maleate and Losartan Potassium in bulk and formulation. The application of both methods for dissolution study of Ena and Los showed reproducible results.

Hence the developed methods are simple, rapid, precise, accurate and can be employed for the routine estimation of Enalapril Maleate and Losartan Potassium in both bulk and tablet dosage form and can also be employed for the dissolution studies of it’s tablet dosage form.

TABLE 4: Statistical significance of difference between two methods

<table>
<thead>
<tr>
<th></th>
<th>Ena</th>
<th>Los</th>
</tr>
</thead>
<tbody>
<tr>
<td>t value</td>
<td>1.762</td>
<td>2.041</td>
</tr>
<tr>
<td>F value</td>
<td>0.015</td>
<td>0.177</td>
</tr>
</tbody>
</table>

\(t = 1.762, t = 2.041 \) for Ena and Los respectively, at 10 degrees of freedom are < 2.22

\(F = 0.015, F = 0.177 \) for Ena and Los respectively, at 5 degrees of freedom are < 5.05

REFERENCES